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Abstract—While language-learning apps have empowered
many users to learn languages inexpensively, the underlying
technology limits the tasks they can offer to atomic, flashcard-
like exercises. In this paper we present an algorithm that can
effectively estimate memory traces from user interaction data
that is generated in complex language learning tasks such as
extensive reading. This technology can be applied to develop
complex, intrinsically-motivating, high-value learning tasks based
around long texts, television series or podcasts.

Index Terms—spaced repetition; weakly supervised learning;
memory retention; language learning

INTRODUCTION

As technology permeates more and more aspects of our
lives, developments in the fields of CALL (Computer-Assisted
Language Learning) and its mobile counterpart MALL have
empowered many foreign language learners to study languages
more cheaply, conveniently and effectively than before. Com-
panies such as Duolingo or Busuu are able to teach languages
by splitting the required knowledge into atomic units (such
as grammar rules or vocabulary items) and using Spaced-
Repetition Scheduling (SRS) algorithms to schedule reviews.
The latter are simple heuristics which increase or decrease
the interval until the next review based on whether the user
correctly recalled the item or not.

In spite of their relative success, there remain challenges in
creating platforms that can match the efficacy of a traditional
classroom setting. The explicit, atomic teaching nature of
these platforms, consisting of single-word or single-sentence
direct translation exercises simply cannot replace complex,
self-directed, immersive activities such as long reading or
listening tasks. This latter type of tasks is of great value to
learners because they enable unconscious language acquisition
to take place [1] and because they are intrinsically motivating
(unlike revising flashcards).

How to support learners when engaging in complex lan-
guage tasks, however, remains an open problem. If the data
from user interactions when engaging in complex tasks could
be mined and used to predict when a user is likely to benefit
from revising a word, i.e. inferring the so-called probability of
recall or memory trace distribution, then much higher-value
software could be built. It would allow for truly adaptive,

personalized learning experiences based around self-directed,
complex language tasks: assisting learners in acquiring the
specific vocabulary used in their favourite television series,
podcasts or books; helping professionals in remembering for-
eign language vocabulary specific to their fields, or indeed
faithfully replicating the mix of complex, self-directed lan-
guage tasks and simple, individualized exercises that make
one-to-one tutoring so effective.

The SRS heuristics which dominate the field are not the
right paradigm for supporting learners in such tasks. Particu-
larly, as language learners wish to bridge the gap between the
intermediate and advanced levels, thousands of new words will
have to be learnt, and it is at this stage when the problems of
SRS become apparent: the wealth of data generated by users
while they are interacting with extensive reading or videos
goes unused, and additionally the implied exponential decay
model of SRS heuristics underestimates users’ memory traces,
leading to many reviews being prematurely scheduled. As we
discuss below, this lack of adaptiveness and inefficiency lead
to user dissatisfaction and the high attrition rates which have
been reported for these platforms.

In this paper, we present an alternative to the SRS paradigm.
Our novel approach can approximate memory traces from
unscheduled exposures, enabling revision or other exercises to
be prioritized in a way that efficiently adapts to the immersive,
high-value tasks we have been discussing. This, however,
is a hard problem because the ground truth is not known.
Our pipeline overcomes this by taking several general-purpose
supervised learning procedures and modifying them to embed
domain knowledge, which acts as a strong prior, thereby
creating a specialized pipeline, an approach often referred to
as weakly supervised learning.

Our contributions in this paper can be summarized as
follows:

• A critical appraisal of the claims made by Duolingo
regarding their popular Half-Life Regression algorithm
[2]. Specifically, we show that the HLR approach fails
to address the unlabeled nature of the data and does not
learn a memory trace but simply learns a trivial trend-
following model (i.e. that a user will continue to recall or
forget indefinitely). We also contest Duolingo’s claimed



TABLE I
SUMMARY OF POPULAR FUNCTIONAL FORMS IN MEMORY RETENTION

MODELING LITERATURE.
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(SWP) Sim. Wickelgren Pwr R = λ(1 + β · ∆)
− 1
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results and show that trivial models can perform much
better than their algorithm when evaluated using their
chosen metrics.

• We present Memory-Trace Regression (MTR), a
weakly supervised regression pipeline which can reliably
estimate vocabulary memory traces from unscheduled
exposures by leveraging domain knowledge.

• We evaluate the MTR pipeline by means of real click-
stream and scrollstream data collected from a custom-
built assisted reading app. This dataset, which we have
released to the public domain, is the only publicly
available dataset which captures vocabulary acquisition
from freely-directed reading and entirely unscheduled
exposures.1

BACKGROUND

Memory retention models

The field of memory retention modeling seeks to explain
the effect of elapsed time on memory decay. It is of great
interest to cognitive scientists and experimental psychologists,
who have developed precise mathematical models to explain
the scores of experiments that have been carried out since the
late 19th century. The methodology used in many of these
experiments usually involves exposing test subjects to a series
of images or nonsense syllables and recording how many of
these are remembered after ∆ time. The resulting retention
rate, or probability of recall distribution, which we will denote
as R throughout the paper, can often be approximated quite
precisely (up to ∼ 95% explained variance [3]) with the two-
parameter models which are summarised in Table I. In the
notation used in the table, ∆ represents the time elapsed since
the last exposure to a specific item, µ represents the memory
strength of the trace, and β is a parameter. In some cases β
is simply a scaling parameter of ∆, so the models only have
a single true degree of freedom if we assume ∆ ∈ [0, 1]; the
table presents these simplified forms as well.

An extensive, authoritative meta-study [3] of 210 datasets,
found Log, ESq, HSq and Pwr to have the best fitting ability

1The repository located at www.github.com/csalg/mtr contains the dataset
used for our evaluation as well as a Jupyter notebook to reproduce all the
tables and figures used throughout the paper.

out of the 105 2-parameter surveyed functional forms. These
models are characterized by a decreasing rate of decay, i.e. the
retention rate decays rapidly for a short period of time and then
stabilizes above an asymptote or decays very slowly depending
on the magnitude of µ. While no model was consistently the
best fit across all datasets, the mean explained variance for
the best fit for each dataset was 95%. Additionally, the paper
found exponential decay models (Exp) to have the second-
worst fitting ability, second only to a purely linear form.

Another popular model is Wickelgren’s Power Function [4],
as well as its simplified, single-degree of freedom version
(SWP) [5], which addresses the discontinuity of Pwr when
∆ = 0.

Fig. 1 illustrates the fitting abilities of these models to
synthetically generated data.

Fig. 1. Fits of popular single degree of freedom models to synthetically
generated data.

Our work is indebted to the almost century and a half of
research in this direction, and our contribution is in showing
how to leverage these elegant models to estimate memory
traces when the ground truth is unknown.

Spaced-Repetition Scheduling

The SRS family of algorithms is used to schedule vocab-
ulary reviews in many language-learning applications. They
offer a solution to the spaced-repetition scheduling problem:
Given a set of items I, and a fixed total amount of time T
which can be devoted to studying these items, how should the
review sessions for each item be allocated to maximize the
average retention rate at the end of some predetermined time
interval?

SRS algorithms apply a heuristic to systematically lengthen
the interval between reviews on successful recall and shorten it
otherwise. Several SRS algorithms have been generalized [2]
to the form R = 2

∆
µ , where µ = 2θ

T x. In this formulation, the
optimal time to review, according to the algorithm, is given
when R = 0.5.

The main limitation of SRS algorithms is that they are
only capable of mapping successes or failures that occur at
scheduled times to future review times, forcing users to adapt
to the schedules and limiting the sort of tasks that software
platforms can offer to simple, atomic, flashcard-like exercises.
As a result, high user attrition rates have been reported: for
example, a study of 62 college students of Spanish found



that ‘students were reluctant to use the app and reported low
enjoyment’, which resulted in a user attrition rate of more 80%
by the end of the 11-week study [6].

Additionally, there is inconclusive evidence for the im-
proved effectiveness assumed by the problem statement in
spacing reviews: [7] found massed readings (five times in one
day), to be as effective as spaced readings (five times daily),
and the ten-year overview in [8] concluded that the advantages
of spacing reviews are only appreciated ‘under a highly
specific set of conditions’. The results of studies comparing
fixed and spaced study regimes are mixed, and at best concede
just a mild advantage for spaced strategies [9], [10]. There
is, however, a well-known correlation between testing and
increased retention rate, and the purported benefits of SRS
could simply be attributed to additional testing, regardless of
scheduling [11].

Weakly Supervised Learning

Weakly Supervised Learning attempts to find ways to work
with data that is labeled incorrectly or inexactly, and has
been successful in tasks as diverse as pixel-level annotation of
images from coarse labels [12], biomedical text mining [13]
and even factor analysis of particle phenomena [14]. In the
case of inferring more detailed information from coarse labels,
the methodology generally involves treating the problem as
underconstrained and using prior domain knowledge to prune
the hypothesis search space. This can be done through rule-
based / generative data annotation [15], appending a prior
to the assumed population distribution and regressing on the
conditional distribution [16], and the use of custom evaluation
metrics and loss functions [14].

A CRITICAL APPRAISAL OF HLR

Before introducing our procedure, we shall conduct a critical
appraisal of the recent, highly influential HLR algorithm [2]. It
shall serve as a cautionary tale against naively posing memory
tracing as a supervised learning problem and motivate our
design in the next section.

HLR was developed by researchers at Duolingo, and gen-
eralizes several SRS algorithms to the form R = 2

∆
µ , where

µ = 2θ
T x. The main claim of the paper is that by posing

the problem as a supervised regression problem and fitting
the weights θ, a memory trace can be approximated. We
will not only prove that this is far from the case, and HLR
simply learns to predict that users will continue succeeding
or failing indefinitely, but a fortiori that the problem is ill-
posed because trivial trend-following models can minimize the
metrics, whereas actual memory traces would score poorly.

The publicly available dataset has dimensions 12.9M× 12.
We will refer to different features using the following notation:
∆ denotes the time elapsed since the last known exposure;
‘history seen’ and ‘history correct’ are denoted by H; and
‘session seen’ and ‘session correct’ by S.

An important characteristic of this dataset is the extreme
skewness of the label distribution. The label ‘p recall’ is
valued [0, 1] and most of the values are clustered around 0

TABLE II
PREDICTIVE PERFORMANCE OF SEVERAL ESTIMATORS ON THE

DUOLINGO DATASET

Regressor X MAE MAE(y < 0.5) W. Acc.

Logistic Regression H 0.466 0.486 0.538
Logistic Regression S 0.0335 0.0111 1.00
Logistic Regression ∆ 0.467 0.488 0.517
Logistic Regression H_S 0.0335 0.0111 1.00
Logistic Regression H_S_∆ 0.0335 0.0111 1.00
HLR H 0.150 0.901 0.506
HLR S 0.0943 0.378 0.789
HLR ∆ 0.124 0.953 0.500
HLR H_S 0.0937 0.377 0.790
HLR H_S_∆ 0.0785 0.369 0.791

and 1, with >85% of the values equal to 0.99, and >94%
greater than 0.5 (Fig. 2). The original paper does not address
how these labels were cast.

HLR and Logistic Regression were trained using 5-fold,
2-pass CV on subsets of the dataset, denoted using the _

notation to refer to the concatenation operator (e.g. the subset
containing the history and session features is denoted as
H_S). Table II evaluates the performance of the estimators
using the MAE (which is the metric chosen by the authors of
the original paper), the MAE of values of y < 0.5, denoted
MAE(y < 0.5), as well as the weighted binary accuracy2.

It is clear from the table that something is not right. The
best performing regressor according to these metrics is the
baseline, Logistic Regression, and furthermore it only requires
two variables, ‘session seen’ and ‘session correct’, to obtain
100% accurate predictions. Additionally, when S is removed
from the dataset, both regressors lose their ability to accurately
predict values where y < 0.5. The S dataset does not include
∆, so it is clear that no memory trace is being inferred; instead,
both estimators are assuming that a user will continue to fail or
succeed indefinitely based on how many successes or failures
happened in the session.

We will use the term trend-following to refer to this phe-
nomenon of estimators learning a trivial model which performs
very well in general-purpose metrics by simply assuming users
will continue to fail or succeed indefinitely. This phenomenon
has also been reported for Deep Knowledge Networks in
the somewhat related task of knowledge component mastery
estimation [17]. The main problem with trend-following is that
these models lack the ability to predict trend-reversals, which
is exactly what is necessary to assist users in structuring their
revision.

In closing, the two main flaws with the HLR approach can
be summarised as follows:

• A naive data annotation procedure. A continuous, ground
truth value of R cannot be observed, however the proce-

2Our results contradict the results in the original paper, where the MAE
for Logistic Regression is claimed to be 0.211. These results were fit using
the implementation in the popular ’sklearn’ library for Python 3.8.5, whereas
the original implementation used custom code, which appears to be incorrect.
The authors have been contacted with our results.



dure assumes that the quasi-binary-valued ‘p recall’ label
corresponds to the ground truth.

• The use of general-purpose evaluation metrics to assess
the generalization ability of the fit. This is problematic
because the ground truth is unknown, and because such
metrics can be minimized by trivial trend-following mod-
els more easily than by approximations of the memory
trace distribution (which, we recall, stabilizes far from
the bounds, and hence would produce a high error rate
when taking the norm of the residuals except for very
large or very small ∆).

MEMORY-TRACE REGRESSION

Our proposed MTR pipeline addresses the limitations inher-
ent in naively posing the problem as a supervised regression
problem by embedding domain knowledge in each of the data
annotation, fitting and evaluation phases.

Data annotation

At the very beginning of our pipeline, the only data available
to us are the clickstream and scrollstream logs L of the form
(ti, li, ui,mi), which respectively stand for timestamp, lemma,
user id and message, such as (1602784275, ‘run’, ‘user843’,
‘WORD WAS CLICKED’). Our immediate goal is to map
L → (X,∆, ỹ), where X is a matrix of predictors, ∆ is a
vector of time elapsed since the last known exposure to the
word, and ỹ is a label that coarsely approximates the retention
rate for a time period.

The messages in the logs can be interpreted as meaning that
the user correctly recalled a word, failed to recall a word or
neither. When interpreted like this, only a small minority of
the logs will be recall failures, and the vast majority will be
successful recalls or unknown, a skewed distribution which
mirrors the Duolingo dataset. Some of this skewness is due to
users choosing texts which are understandable, and therefore
comprising mostly of vocabulary which is recalled easily.
However much of it is explained by localized high-frequency:
as a direct consequence of Zipf’s law [18], words tend to
appear nearby, and users can remember the meaning of a word
after clicking once or twice, being further aided by context.
This acts as a confounding variable and invalidates the i.i.d.
assumption for recalls.

The localized high-frequency effect is addressed using a
rule-based labeling heuristic:

The time-domain is split into intervals of equal length and
s([ti−1, ti]), the recall score for the time interval, is calculated
using the number of recalls and failures (denoted x+, x−

respectively) for the interval, weighing the failures linearly
and the recalls sublinearly. MTR uses

s([ti−1, ti]) ,

√
x+

x− +
√
x+

Partitioning the time domain into intervals also allows the
use of nearby recall scores to smooth the data by applying
interpolation and moving averages; in the case of MTR, linear

interpolation is applied to fill the time steps with missing data3,
followed by a bi-directional exponential moving average. This
has the effect of increasing a low score if it happens in the
neighbourhood of high scores and vice versa.

At the end of the procedure we arrive at the smoothed
recall score, which shall serve as our target ỹ, since it is a
coarse approximation of continuous values arising from the
population retention rate R.

The rest of the data is annotated as follows: ∆ is simply
the time elapsed between the end of the previous timestep
and X is a collection of summary statistics describing the log
stream: counters, intervals and streaks, as well as any desired
custom-engineered features.

Fitting

The memory trace curve can be described by the functional
forms in Table I. Since these are single degree of freedom
models, they act as a strong prior and drastically prune our
hypothesis search space. These functional forms are hard to
train without some additional manipulation: their form should
be changed to make µ the dependent variable. The latent
variable µ, unlike R, enjoys many desireable properties for
painless regressability: it is continuous, positive-valued, often
monotonically increasing, etc. Any regression technique that
is robust to noisy labels can then be used to regress on µ, from
which ypredicted can be trivially calculated.

Since X is used to predict µ, the memory strength, it should
not include ∆ or any other values that change in between the
last exposure and the current time.

Model Evaluation

Our assumption that ỹ is coarse and noisy (non-Gaussian
noise) invalidates any theoretical argument for using general-
purpose metrics such as the MSE or the MAE. Additionally,
due to the nature of the available data, label values are biased
towards the bounds of the [0, 1] range, and hence residuals
can still be minimized with trivial, trend-following models
(although not to the extent seen in the previous section).
However one silver lining of this bias towards the bounds
is that information on trend-reversals is preserved. Since
predicting trend-reversals can only be done reliably by a close
estimate of R, we can build metrics around this characteristic
of our data and desired estimator. The effect is amplified as ∆
increases, because the rate of decay must be very close to R in
order to predict long-term trend-reversals with minimum error.
Evaluation according to these effects can be accomplished by
means of the weighted MSE:

WMSE(w)(ỹ, ỹpredicted) , |w � (ỹ − ỹpredicted)|22
where � is the element-wise (Hadamard) product.

The weight w allows weighing some residuals more heavily
than others, and can be used to encode the characteristics
discussed above. The trend-reversal weight for each residual

3These interpolated values are only used for calculating moving averages
and not as labels.



can be quantified using the distance between ỹ and its prede-
cessor ỹprevious, denoted τ , |ỹ− ỹprevious|, whereas the product
τ �∆ is used as a weight to assess long-term trend-reversal
predictive ability.

EVALUATION

In order to assess the performance of our procedure, an
assisted reading app named Lomb was built, in the style of
ReadLang (www.readlang.com) and LingQ (www.lingq.com).
The app assists users in the task of reading texts written in
a foreign language by presenting translations for highighted
words, as well as sentence translations for clicked sentences.
The highlighted words were assembled in a revision panel,
and users could click on the words to see the definition
or scroll down. All of these events were tracked and a
log with the lemmatized form of the word was persisted
into a database. The messages ’TEXT SENTENCE READ’
and ’REVISION NOT CLICKED’ were interpreted as suc-
cessful recalls, ’TEXT WORD WAS HIGHLIGHTED’ and
’REVISION CLICKED’ were interpreted as failures.

In total, ∼ 89K logs were collected over a period of 4
months. A significant limitation of our dataset is that it was
mostly generated by two users out of 13 users who participated
in the platform, hence this data is not suitable for training a
model that generalizes well to unseen data from many users.
However, to the best of our knowledge, this is the only publicly
available dataset which captures users engaging in a complex,
freely-directed task in a foreign language with no scheduled
exposures. The logs span a period of 161 days.

Fig. 2. Comparison of the label value distribution in the Lomb and Duolingo
datasets.

The MTR pipeline was implemented using Python 3.8.5 us-
ing the popular scientific computing libraries numpy, pandas
and sklearn. Application of the data annotation procedure
produced a dataset with ∼ 8.9K rows with a balanced label
distribution, albeit heavily biased towards the edges (Fig. 2).
Fitting4 was performed using 5-fold 2-pass CV, and the con-
fidence intervals for different evaluation metrics are presented
in Table III. The following estimators were fit:

• Linear and logistic regression as baselines (from the
sklearn library).

4The values of ỹ were clipped to [0.1, 0.9] for the MTR regressors and
[0.001, 0.999] for HLR as this improved their performance.

TABLE III
FITTING PERFORMANCE OF DIFFERENT MEMORY TRACE REGRESSORS ON

THE LOMB DATASET

Regressor MSE WMSE(τ) WMSE(τ � ∆)

Linear Regression 0.114 0.0182 ± 0.0030 0.000978 ± 0.00074
Logistic Regression 0.116 0.0249 ± 0.0043 0.00138 ± 0.0011
HLR 0.171 0.0139 ± 0.0031 0.000560 ± 0.00034
HLR (X_∆) 0.171 0.0133 ± 0.0031 0.000421 ± 0.00020
MTR-Exp 0.246 0.0134 ± 0.0030 0.000397 ± 0.00020
MTR-ESq 0.198 0.0114 ± 0.0018 0.000351 ± 0.00015
MTR-Hyp 0.247 0.0140 ± 0.0028 0.000365 ± 0.00017
MTR-HSq 0.197 0.0114 ± 0.0018 0.000333 ± 0.00014
MTR-SWP 0.176 0.0109 ± 0.0021 0.000332 ± 0.00013

• The simplified forms in Table I, paired with Linear
Regression as base regressor. Other base regressors were
fitted, but their performance was similar or worse than
LR, so their results have been omitted.

• The HLR functional form 2
∆
2µ , which we will denote as

HLR, albeit foregoing SGD in favour of Linear Regres-
sion as above.

Lastly, the plots in Fig. 3 allow visualization of the esti-
mated traces produced by Linear Regression, HLR and MTR-
SWP (the best performing estimator according to the WMSE
metrics).

Fig. 3. Plots of two different estimated memory traces.

The results show that:
• While Linear Regression and Logistic Regression per-

formed well when evaluated using the unweighted MSE,
their error was 1.8 and 2.5 times higher than the best
regressor in the WMSE(τ) metric, and 3 and 4 times
higher when evaluated using the WMSE(τ �∆) metric.
This confirms the superior trend reversal and long-term
predictive properties of the MTR regressors.

• The performance of HLR was generally better than
the linear baselines but significantly poorer than that



of the MTR regressors, particularly in predicting long-
term trend-reversals. This suggests that it is not a close
approximation to the population R.

• Among the MTR models, the best fit is achieved by MTR-
HSq and MTR-SWP with relatively minor performance
differences, whereas Exp performs second-worst (after
linear models). This situation mirrors the conclusion
reached in the large meta-study discussed earlier [3], and
hence we can conclude our models significantly correlate
with the population R, even though they are inferred from
unlabeled data.

The plots in Fig. 3 allow us a glimpse into how the different
memory traces explain the events from the logs. The poor
trend-reversal predictive ability of Logistic Regression can
be intuitively understood because it is a flat, non-decaying
line which simply follows the trend. HLR is limited by its
exponential decay form: it either decays violently fast or does
not decay at all, which suggests that this form is unsuitable
for estimating memory traces. Only the MTR-SWP regressor
approximates a realistic memory trace like the ones observed
in the scientific literature.

RELATED WORK

Previous work has considered the problem as a standard
supervised classification task; examples include a model-free
reinforcement learning approach [19], and the online schedul-
ing algorithm MEMORIZE [20].

CONCLUSION & FUTURE WORK

The current work highlights some of the challenges involved
in estimating memory traces from user interaction data and
presents a weakly supervised regression pipeline for their
estimation. We argue that posing the problem as a naive
classification task ignores the confounding variables affecting
the labels, the fact that continuous values for the ground
truth are not known, or the inadequacy of general-purpose
evaluation metrics. Our method addresses these issues and can
reliably estimate memory traces from user interaction data.

Since this is a first effort, there is room for improvement in
the data annotation and evaluation phases, or by attempting to
fit models with more degrees of freedom.
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